Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-8 ab=1\times 15=15
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx+15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-15 -3,-5
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 15.
-1-15=-16 -3-5=-8
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=-3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
ຂຽນ x^{2}-8x+15 ຄືນໃໝ່ເປັນ \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ -3 ໃນກຸ່ມທີສອງ.
\left(x-5\right)\left(x-3\right)
ແຍກຄຳທົ່ວໄປ x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}-8x+15=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -8.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
ຄູນ -4 ໃຫ້ກັບ 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
ເພີ່ມ 64 ໃສ່ -60.
x=\frac{-\left(-8\right)±2}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 4.
x=\frac{8±2}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -8 ແມ່ນ 8.
x=\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±2}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 8 ໃສ່ 2.
x=5
ຫານ 10 ດ້ວຍ 2.
x=\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±2}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ 8.
x=3
ຫານ 6 ດ້ວຍ 2.
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 5 ເປັນ x_{1} ແລະ 3 ເປັນ x_{2}.