Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}-6x+9=0
ເພີ່ມ 9 ໃສ່ທັງສອງດ້ານ.
a+b=-6 ab=9
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ x^{2}-6x+9 ໂດຍໃຊ້ສູດຄຳນວນ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-9 -3,-3
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 9.
-1-9=-10 -3-3=-6
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=-3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -6.
\left(x-3\right)\left(x-3\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(x+a\right)\left(x+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
\left(x-3\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=3
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ x-3=0.
x^{2}-6x+9=0
ເພີ່ມ 9 ໃສ່ທັງສອງດ້ານ.
a+b=-6 ab=1\times 9=9
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx+9. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-9 -3,-3
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 9.
-1-9=-10 -3-3=-6
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=-3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
ຂຽນ x^{2}-6x+9 ຄືນໃໝ່ເປັນ \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ -3 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(x-3\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(x-3\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=3
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ x-3=0.
x^{2}-6x=-9
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x^{2}-6x-\left(-9\right)=-9-\left(-9\right)
ເພີ່ມ 9 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x^{2}-6x-\left(-9\right)=0
ການລົບ -9 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}-6x+9=0
ລົບ -9 ອອກຈາກ 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -6 ສຳລັບ b ແລະ 9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
ຄູນ -4 ໃຫ້ກັບ 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
ເພີ່ມ 36 ໃສ່ -36.
x=-\frac{-6}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{6}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -6 ແມ່ນ 6.
x=3
ຫານ 6 ດ້ວຍ 2.
x^{2}-6x=-9
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
ຫານ -6, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -3. ຈາກນັ້ນເພີ່ມຮາກຂອງ -3 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-6x+9=-9+9
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
x^{2}-6x+9=0
ເພີ່ມ -9 ໃສ່ 9.
\left(x-3\right)^{2}=0
ຕົວປະກອບ x^{2}-6x+9. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-3=0 x-3=0
ເຮັດໃຫ້ງ່າຍ.
x=3 x=3
ເພີ່ມ 3 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=3
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.