ແກ້ສຳລັບ x
x=-7
x=3
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x^{2}-21+4x=0
ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
x^{2}+4x-21=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=4 ab=-21
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ x^{2}+4x-21 ໂດຍໃຊ້ສູດຄຳນວນ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,21 -3,7
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -21.
-1+21=20 -3+7=4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=7
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 4.
\left(x-3\right)\left(x+7\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(x+a\right)\left(x+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
x=3 x=-7
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ x+7=0.
x^{2}-21+4x=0
ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
x^{2}+4x-21=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=4 ab=1\left(-21\right)=-21
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx-21. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,21 -3,7
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -21.
-1+21=20 -3+7=4
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=7
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 4.
\left(x^{2}-3x\right)+\left(7x-21\right)
ຂຽນ x^{2}+4x-21 ຄືນໃໝ່ເປັນ \left(x^{2}-3x\right)+\left(7x-21\right).
x\left(x-3\right)+7\left(x-3\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 7 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(x+7\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=3 x=-7
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ x+7=0.
x^{2}-21+4x=0
ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
x^{2}+4x-21=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 4 ສຳລັບ b ແລະ -21 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
x=\frac{-4±\sqrt{16+84}}{2}
ຄູນ -4 ໃຫ້ກັບ -21.
x=\frac{-4±\sqrt{100}}{2}
ເພີ່ມ 16 ໃສ່ 84.
x=\frac{-4±10}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 100.
x=\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±10}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 10.
x=3
ຫານ 6 ດ້ວຍ 2.
x=-\frac{14}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±10}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 10 ອອກຈາກ -4.
x=-7
ຫານ -14 ດ້ວຍ 2.
x=3 x=-7
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}-21+4x=0
ເພີ່ມ 4x ໃສ່ທັງສອງດ້ານ.
x^{2}+4x=21
ເພີ່ມ 21 ໃສ່ທັງສອງດ້ານ. ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
x^{2}+4x+2^{2}=21+2^{2}
ຫານ 4, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 2. ຈາກນັ້ນເພີ່ມຮາກຂອງ 2 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+4x+4=21+4
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x^{2}+4x+4=25
ເພີ່ມ 21 ໃສ່ 4.
\left(x+2\right)^{2}=25
ຕົວປະກອບ x^{2}+4x+4. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+2\right)^{2}}=\sqrt{25}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+2=5 x+2=-5
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-7
ລົບ 2 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}