ແກ້ສຳລັບ x (complex solution)
x=-3+i
x=-3-i
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x^{2}+7x-x=-10
ລົບ x ອອກຈາກທັງສອງຂ້າງ.
x^{2}+6x=-10
ຮວມ 7x ແລະ -x ເພື່ອຮັບ 6x.
x^{2}+6x+10=0
ເພີ່ມ 10 ໃສ່ທັງສອງດ້ານ.
x=\frac{-6±\sqrt{6^{2}-4\times 10}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 6 ສຳລັບ b ແລະ 10 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 10}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 6.
x=\frac{-6±\sqrt{36-40}}{2}
ຄູນ -4 ໃຫ້ກັບ 10.
x=\frac{-6±\sqrt{-4}}{2}
ເພີ່ມ 36 ໃສ່ -40.
x=\frac{-6±2i}{2}
ເອົາຮາກຂັ້ນສອງຂອງ -4.
x=\frac{-6+2i}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±2i}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 2i.
x=-3+i
ຫານ -6+2i ດ້ວຍ 2.
x=\frac{-6-2i}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±2i}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 2i ອອກຈາກ -6.
x=-3-i
ຫານ -6-2i ດ້ວຍ 2.
x=-3+i x=-3-i
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}+7x-x=-10
ລົບ x ອອກຈາກທັງສອງຂ້າງ.
x^{2}+6x=-10
ຮວມ 7x ແລະ -x ເພື່ອຮັບ 6x.
x^{2}+6x+3^{2}=-10+3^{2}
ຫານ 6, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ 3. ຈາກນັ້ນເພີ່ມຮາກຂອງ 3 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+6x+9=-10+9
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3.
x^{2}+6x+9=-1
ເພີ່ມ -10 ໃສ່ 9.
\left(x+3\right)^{2}=-1
ຕົວປະກອບ x^{2}+6x+9. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-1}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+3=i x+3=-i
ເຮັດໃຫ້ງ່າຍ.
x=-3+i x=-3-i
ລົບ 3 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}