Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=7 ab=12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ x^{2}+7x+12 ໂດຍໃຊ້ສູດຄຳນວນ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,12 2,6 3,4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 12.
1+12=13 2+6=8 3+4=7
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=3 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(x+3\right)\left(x+4\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(x+a\right)\left(x+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
x=-3 x=-4
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x+3=0 ແລະ x+4=0.
a+b=7 ab=1\times 12=12
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx+12. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,12 2,6 3,4
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 12.
1+12=13 2+6=8 3+4=7
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=3 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
ຂຽນ x^{2}+7x+12 ຄືນໃໝ່ເປັນ \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 4 ໃນກຸ່ມທີສອງ.
\left(x+3\right)\left(x+4\right)
ແຍກຄຳທົ່ວໄປ x+3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-3 x=-4
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x+3=0 ແລະ x+4=0.
x^{2}+7x+12=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 7 ສຳລັບ b ແລະ 12 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49-48}}{2}
ຄູນ -4 ໃຫ້ກັບ 12.
x=\frac{-7±\sqrt{1}}{2}
ເພີ່ມ 49 ໃສ່ -48.
x=\frac{-7±1}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1.
x=-\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±1}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 1.
x=-3
ຫານ -6 ດ້ວຍ 2.
x=-\frac{8}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±1}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -7.
x=-4
ຫານ -8 ດ້ວຍ 2.
x=-3 x=-4
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}+7x+12=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
x^{2}+7x+12-12=-12
ລົບ 12 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x^{2}+7x=-12
ການລົບ 12 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
ຫານ 7, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{7}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{7}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{7}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
ເພີ່ມ -12 ໃສ່ \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
ຕົວປະກອບ x^{2}+7x+\frac{49}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
ເຮັດໃຫ້ງ່າຍ.
x=-3 x=-4
ລົບ \frac{7}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.