Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=6 ab=1\left(-16\right)=-16
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx-16. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,16 -2,8 -4,4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -16.
-1+16=15 -2+8=6 -4+4=0
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-2 b=8
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 6.
\left(x^{2}-2x\right)+\left(8x-16\right)
ຂຽນ x^{2}+6x-16 ຄືນໃໝ່ເປັນ \left(x^{2}-2x\right)+\left(8x-16\right).
x\left(x-2\right)+8\left(x-2\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 8 ໃນກຸ່ມທີສອງ.
\left(x-2\right)\left(x+8\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}+6x-16=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-16\right)}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-6±\sqrt{36-4\left(-16\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 6.
x=\frac{-6±\sqrt{36+64}}{2}
ຄູນ -4 ໃຫ້ກັບ -16.
x=\frac{-6±\sqrt{100}}{2}
ເພີ່ມ 36 ໃສ່ 64.
x=\frac{-6±10}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 100.
x=\frac{4}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±10}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 10.
x=2
ຫານ 4 ດ້ວຍ 2.
x=-\frac{16}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±10}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 10 ອອກຈາກ -6.
x=-8
ຫານ -16 ດ້ວຍ 2.
x^{2}+6x-16=\left(x-2\right)\left(x-\left(-8\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 2 ເປັນ x_{1} ແລະ -8 ເປັນ x_{2}.
x^{2}+6x-16=\left(x-2\right)\left(x+8\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.