Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}+5x-0=0
ຄູນ 0 ກັບ 75 ເພື່ອໃຫ້ໄດ້ 0.
x^{2}+5x=0
ຈັດລຳດັບພົດຄືນໃໝ່.
x\left(x+5\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=-5
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ x+5=0.
x^{2}+5x-0=0
ຄູນ 0 ກັບ 75 ເພື່ອໃຫ້ໄດ້ 0.
x^{2}+5x=0
ຈັດລຳດັບພົດຄືນໃໝ່.
x=\frac{-5±\sqrt{5^{2}}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 5 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 5^{2}.
x=\frac{0}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±5}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 5.
x=0
ຫານ 0 ດ້ວຍ 2.
x=-\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±5}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ -5.
x=-5
ຫານ -10 ດ້ວຍ 2.
x=0 x=-5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x^{2}+5x-0=0
ຄູນ 0 ກັບ 75 ເພື່ອໃຫ້ໄດ້ 0.
x^{2}+5x=0
ຈັດລຳດັບພົດຄືນໃໝ່.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
ຫານ 5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
ຕົວປະກອບ x^{2}+5x+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
ເຮັດໃຫ້ງ່າຍ.
x=0 x=-5
ລົບ \frac{5}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.