Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x^{2}+4x-12=0
ເພື່ອແກ້ໄຂຄວາມບໍ່ເທົ່າກັນ, ໃຫ້ວາງຕົວປະກອບໄວ້ຊ້າຍມື. Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 1\left(-12\right)}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, 4 ໃຫ້ b ແລະ -12 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
x=\frac{-4±8}{2}
ເລີ່ມຄຳນວນ.
x=2 x=-6
ແກ້ສົມຜົນ x=\frac{-4±8}{2} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
\left(x-2\right)\left(x+6\right)\leq 0
ຂຽນຄວາມບໍ່ເທົ່າກັນຄືນໃໝ່ໂດຍໃຊ້ວິທີທີ່ໄດ້ຮັບມາ.
x-2\geq 0 x+6\leq 0
ເພື່ອໃຫ້ຜະລິດຕະພັນເປັນ ≤0, ໜຶ່ງໃນຄ່າຂອງ x-2 ແລະ x+6 ຈະຕ້ອງເປັນ ≥0 ແລະ ຄ່າອື່ນຕ້ອງເປັນ ≤0. ພິຈາລະນາກໍລະນີເມື່ອ x-2\geq 0 ແລະ x+6\leq 0.
x\in \emptyset
ນີ້ເປັນ false ສຳລັບ x ທຸກອັນ.
x+6\geq 0 x-2\leq 0
ພິຈາລະນາກໍລະນີເມື່ອ x-2\leq 0 ແລະ x+6\geq 0.
x\in \begin{bmatrix}-6,2\end{bmatrix}
ວິທີແກ້ທີ່ຈັດການຄວາມບໍ່ເທົ່າກັນທັງສອງໄດ້ແມ່ນ x\in \left[-6,2\right].
x\in \begin{bmatrix}-6,2\end{bmatrix}
ວິທີແກ້ສຸດທ້າຍແມ່ນເປັນການຮວມວິທີການທີ່ຊອກມາໄດ້.