ຕົວປະກອບ
\left(x+18\right)^{2}
ປະເມີນ
\left(x+18\right)^{2}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=36 ab=1\times 324=324
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx+324. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 324.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=18 b=18
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 36.
\left(x^{2}+18x\right)+\left(18x+324\right)
ຂຽນ x^{2}+36x+324 ຄືນໃໝ່ເປັນ \left(x^{2}+18x\right)+\left(18x+324\right).
x\left(x+18\right)+18\left(x+18\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ 18 ໃນກຸ່ມທີສອງ.
\left(x+18\right)\left(x+18\right)
ແຍກຄຳທົ່ວໄປ x+18 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(x+18\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(x^{2}+36x+324)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
\sqrt{324}=18
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 324.
\left(x+18\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
x^{2}+36x+324=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 324}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-36±\sqrt{1296-4\times 324}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 36.
x=\frac{-36±\sqrt{1296-1296}}{2}
ຄູນ -4 ໃຫ້ກັບ 324.
x=\frac{-36±\sqrt{0}}{2}
ເພີ່ມ 1296 ໃສ່ -1296.
x=\frac{-36±0}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x^{2}+36x+324=\left(x-\left(-18\right)\right)\left(x-\left(-18\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ -18 ເປັນ x_{1} ແລະ -18 ເປັນ x_{2}.
x^{2}+36x+324=\left(x+18\right)\left(x+18\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}