Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\left(x^{8}-1\right)\left(x^{8}+1\right)
ຂຽນ x^{16}-1 ຄືນໃໝ່ເປັນ \left(x^{8}\right)^{2}-1^{2}. ຄວາມແຕກຕ່າງຂອງສີ່ຫຼ່ຽມສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}-1\right)\left(x^{4}+1\right)
ພິຈາລະນາ x^{8}-1. ຂຽນ x^{8}-1 ຄືນໃໝ່ເປັນ \left(x^{4}\right)^{2}-1^{2}. ຄວາມແຕກຕ່າງຂອງສີ່ຫຼ່ຽມສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
ພິຈາລະນາ x^{4}-1. ຂຽນ x^{4}-1 ຄືນໃໝ່ເປັນ \left(x^{2}\right)^{2}-1^{2}. ຄວາມແຕກຕ່າງຂອງສີ່ຫຼ່ຽມສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
ພິຈາລະນາ x^{2}-1. ຂຽນ x^{2}-1 ຄືນໃໝ່ເປັນ x^{2}-1^{2}. ຄວາມແຕກຕ່າງຂອງສີ່ຫຼ່ຽມສາມາດແຍກໄດ້ໂດຍໃຊ້ກົດ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ. ພະຫຸນາມຕໍ່ໄປນີ້ບໍ່ແມ່ນປັດໃຈເນື່ອງຈາກພວກມັນບໍ່ມີຮາກແບບມີເຫດຜົນ: x^{2}+1,x^{4}+1,x^{8}+1.