Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x-\frac{x+1}{x}=0
ລົບ \frac{x+1}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{x+1}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{x+1}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-x-1}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(x+1\right).
x^{2}-x-1=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -1 ສຳລັບ b ແລະ -1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
ເພີ່ມ 1 ໃສ່ 4.
x=\frac{1±\sqrt{5}}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{\sqrt{5}+1}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{5}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{5}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{5} ອອກຈາກ 1.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x-\frac{x+1}{x}=0
ລົບ \frac{x+1}{x} ອອກຈາກທັງສອງຂ້າງ.
\frac{xx}{x}-\frac{x+1}{x}=0
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
ເນື່ອງຈາກ \frac{xx}{x} ແລະ \frac{x+1}{x} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-x-1}{x}=0
ຄູນໃນເສດສ່ວນ xx-\left(x+1\right).
x^{2}-x-1=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x.
x^{2}-x=1
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານ. ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
ຫານ -1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
ເພີ່ມ 1 ໃສ່ \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
ຕົວປະກອບ x^{2}-x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.