Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x, y
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x+3y=6,5x-2y=13
ເພື່ອແກ້ຄູ່ສົມຜົນໃດໜຶ່ງໂດຍໃຊ້ການແທນ, ທຳອິດໃຫ້ແກ້ໜຶ່ງໃນສົມຜົນນັ້ນສຳລັບໜຶ່ງໃນຕົວແປຕ່າງໆກ່ອນ. ຈາກນັ້ນແທນທີ່ຜົນສຳລັບຕົວແປນັ້ນໃນສົມຜົນອື່ນ.
x+3y=6
ເລືອກໜຶ່ງໃນສົມຜົນ ແລະ ແກ້ມັນສຳລັບ x ໂດຍການແຍກ x ທາງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
x=-3y+6
ລົບ 3y ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
5\left(-3y+6\right)-2y=13
ການແທນ-3y+6 ສຳລັບ x ໃນສົມຜົນອື່ນ, 5x-2y=13.
-15y+30-2y=13
ຄູນ 5 ໃຫ້ກັບ -3y+6.
-17y+30=13
ເພີ່ມ -15y ໃສ່ -2y.
-17y=-17
ລົບ 30 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
y=1
ຫານທັງສອງຂ້າງດ້ວຍ -17.
x=-3+6
ການແທນ 1 ສຳລັບ y ໃນ x=-3y+6. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ x ໄດ້ໂດຍກົງ.
x=3
ເພີ່ມ 6 ໃສ່ -3.
x=3,y=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.
x+3y=6,5x-2y=13
ວາງສົມຜົນໃນຮູບແບບມາດຕະຖານ ແລ້ວຈາກນັ້ນໃຊ້ເມທຣິກເພື່ອແກ້ລະບົບສົມຜົນ.
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
ຂຽນສົມຜົນໃນຮູບແບບເມທຣິກ.
inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ຄູນຊ້າຍໃສ່ສົມຜົນຕາມເມທຣິກປີ້ນກັບຂອງ \left(\begin{matrix}1&3\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ຜະລິດຕະພັນຂອງເມທຣິກ ແລະ ຄ່າປີ້ນຂອງມັນແມ່ນເມທຣິກການຢືນຢັນ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ຄູນເມທຣິດຢູ່ດ້ານຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3\times 5}&-\frac{3}{-2-3\times 5}\\-\frac{5}{-2-3\times 5}&\frac{1}{-2-3\times 5}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
ສຳລັບແມ​ຕ​ຣິກ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ແມ​ຕ​ຣິກກົງກັນຂ້າມແມ່ນ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ດັ່ງນັ້ນສົມຜົນເມທຣິກສາມາດຖືກຂຽນຄືນໃໝ່ເປັນບັນຫາສູດຄູນເມທຣິກໄດ້.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\\frac{5}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
ເຮັດເລກຄະນິດ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 6+\frac{3}{17}\times 13\\\frac{5}{17}\times 6-\frac{1}{17}\times 13\end{matrix}\right)
ຄູນເມທຣິກຕ່າງໆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ເຮັດເລກຄະນິດ.
x=3,y=1
ສະກັດອົງປະກອບເມທຣິກ x ແລະ y.
x+3y=6,5x-2y=13
ເພື່ອແກ້ໂດຍການກຳຈັດ, ຄ່າສຳປະສິດຂອງໜຶ່ງໃນຕົວແປຈະຕ້ອງເທົ່າກັນໃນສົມຜົນທັງສອງ ເພື່ອໃຫ້ຕົວແປຈະຍົກເລີກອອກໄປເມື່ອໜຶ່ງສົມຜົນຖືກລົບອອກຈາກສົມຜົນອື່ນ.
5x+5\times 3y=5\times 6,5x-2y=13
ເພື່ອເຮັດໃຫ້ x ແລະ 5x ເທົ່າກັນ, ໃຫ້ຄູນພົດທັງໝົດໃນທັງສອງຂ້າງຂອງສົມຜົນທຳອິດດ້ວຍ 5 ແລະ ພົດທັງໝົດຂອງແຕ່ລະຂ້າງຂອງສົມຜົນທີສອງດ້ວຍ 1.
5x+15y=30,5x-2y=13
ເຮັດໃຫ້ງ່າຍ.
5x-5x+15y+2y=30-13
ລົບ 5x-2y=13 ອອກຈາກ 5x+15y=30 ໂດຍການລົບພົດອອກຈາກແຕ່ລະຂ້າງຂອງເຄື່ອງໝາຍເທົ່າກັບ.
15y+2y=30-13
ເພີ່ມ 5x ໃສ່ -5x. ຂໍ້ກຳນົດ 5x ແລະ -5x ຍົກເລີກອອກໄປ, ເຮັດໃຫ້ມີສົມຜົນໜຶ່ງທີ່ມີພຽງຕົວແປດຽວທີ່ສາມາດແກ້ໄດ້.
17y=30-13
ເພີ່ມ 15y ໃສ່ 2y.
17y=17
ເພີ່ມ 30 ໃສ່ -13.
y=1
ຫານທັງສອງຂ້າງດ້ວຍ 17.
5x-2=13
ການແທນ 1 ສຳລັບ y ໃນ 5x-2y=13. ເນື່ອງຈາກຜົນຂອງສົມຜົນມີໜຶ່ງຕົວແປເທົ່ານັ້ນ, ທ່ານສາມາດແກ້ສຳລັບ x ໄດ້ໂດຍກົງ.
5x=15
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=3
ຫານທັງສອງຂ້າງດ້ວຍ 5.
x=3,y=1
ຕອນນີ້ແກ້ໄຂລະບົບແລ້ວ.