ຕົວປະກອບ
\left(v-13\right)^{2}
ປະເມີນ
\left(v-13\right)^{2}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-26 ab=1\times 169=169
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ v^{2}+av+bv+169. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-169 -13,-13
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 169.
-1-169=-170 -13-13=-26
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-13 b=-13
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -26.
\left(v^{2}-13v\right)+\left(-13v+169\right)
ຂຽນ v^{2}-26v+169 ຄືນໃໝ່ເປັນ \left(v^{2}-13v\right)+\left(-13v+169\right).
v\left(v-13\right)-13\left(v-13\right)
ຕົວຫານ v ໃນຕອນທຳອິດ ແລະ -13 ໃນກຸ່ມທີສອງ.
\left(v-13\right)\left(v-13\right)
ແຍກຄຳທົ່ວໄປ v-13 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(v-13\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(v^{2}-26v+169)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
\sqrt{169}=13
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 169.
\left(v-13\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
v^{2}-26v+169=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
v=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 169}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
v=\frac{-\left(-26\right)±\sqrt{676-4\times 169}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -26.
v=\frac{-\left(-26\right)±\sqrt{676-676}}{2}
ຄູນ -4 ໃຫ້ກັບ 169.
v=\frac{-\left(-26\right)±\sqrt{0}}{2}
ເພີ່ມ 676 ໃສ່ -676.
v=\frac{-\left(-26\right)±0}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
v=\frac{26±0}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -26 ແມ່ນ 26.
v^{2}-26v+169=\left(v-13\right)\left(v-13\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 13 ເປັນ x_{1} ແລະ 13 ເປັນ x_{2}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}