ແກ້ສຳລັບ s
s=-5
s=10
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-5 ab=-50
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ s^{2}-5s-50 ໂດຍໃຊ້ສູດຄຳນວນ s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-50 2,-25 5,-10
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -50.
1-50=-49 2-25=-23 5-10=-5
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-10 b=5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(s-10\right)\left(s+5\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(s+a\right)\left(s+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
s=10 s=-5
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ s-10=0 ແລະ s+5=0.
a+b=-5 ab=1\left(-50\right)=-50
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ s^{2}+as+bs-50. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-50 2,-25 5,-10
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -50.
1-50=-49 2-25=-23 5-10=-5
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-10 b=5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(s^{2}-10s\right)+\left(5s-50\right)
ຂຽນ s^{2}-5s-50 ຄືນໃໝ່ເປັນ \left(s^{2}-10s\right)+\left(5s-50\right).
s\left(s-10\right)+5\left(s-10\right)
ຕົວຫານ s ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(s-10\right)\left(s+5\right)
ແຍກຄຳທົ່ວໄປ s-10 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
s=10 s=-5
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ s-10=0 ແລະ s+5=0.
s^{2}-5s-50=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
s=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-50\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -5 ສຳລັບ b ແລະ -50 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-5\right)±\sqrt{25-4\left(-50\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
s=\frac{-\left(-5\right)±\sqrt{25+200}}{2}
ຄູນ -4 ໃຫ້ກັບ -50.
s=\frac{-\left(-5\right)±\sqrt{225}}{2}
ເພີ່ມ 25 ໃສ່ 200.
s=\frac{-\left(-5\right)±15}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 225.
s=\frac{5±15}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
s=\frac{20}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ s=\frac{5±15}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 15.
s=10
ຫານ 20 ດ້ວຍ 2.
s=-\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ s=\frac{5±15}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 15 ອອກຈາກ 5.
s=-5
ຫານ -10 ດ້ວຍ 2.
s=10 s=-5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
s^{2}-5s-50=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
s^{2}-5s-50-\left(-50\right)=-\left(-50\right)
ເພີ່ມ 50 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
s^{2}-5s=-\left(-50\right)
ການລົບ -50 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
s^{2}-5s=50
ລົບ -50 ອອກຈາກ 0.
s^{2}-5s+\left(-\frac{5}{2}\right)^{2}=50+\left(-\frac{5}{2}\right)^{2}
ຫານ -5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
s^{2}-5s+\frac{25}{4}=50+\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
s^{2}-5s+\frac{25}{4}=\frac{225}{4}
ເພີ່ມ 50 ໃສ່ \frac{25}{4}.
\left(s-\frac{5}{2}\right)^{2}=\frac{225}{4}
ຕົວປະກອບ s^{2}-5s+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(s-\frac{5}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
s-\frac{5}{2}=\frac{15}{2} s-\frac{5}{2}=-\frac{15}{2}
ເຮັດໃຫ້ງ່າຍ.
s=10 s=-5
ເພີ່ມ \frac{5}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}