Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-10 ab=1\times 25=25
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ r^{2}+ar+br+25. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-25 -5,-5
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 25.
-1-25=-26 -5-5=-10
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=-5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -10.
\left(r^{2}-5r\right)+\left(-5r+25\right)
ຂຽນ r^{2}-10r+25 ຄືນໃໝ່ເປັນ \left(r^{2}-5r\right)+\left(-5r+25\right).
r\left(r-5\right)-5\left(r-5\right)
ຕົວຫານ r ໃນຕອນທຳອິດ ແລະ -5 ໃນກຸ່ມທີສອງ.
\left(r-5\right)\left(r-5\right)
ແຍກຄຳທົ່ວໄປ r-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(r-5\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(r^{2}-10r+25)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
\sqrt{25}=5
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 25.
\left(r-5\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
r^{2}-10r+25=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
r=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -10.
r=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
ຄູນ -4 ໃຫ້ກັບ 25.
r=\frac{-\left(-10\right)±\sqrt{0}}{2}
ເພີ່ມ 100 ໃສ່ -100.
r=\frac{-\left(-10\right)±0}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
r=\frac{10±0}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -10 ແມ່ນ 10.
r^{2}-10r+25=\left(r-5\right)\left(r-5\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 5 ເປັນ x_{1} ແລະ 5 ເປັນ x_{2}.