Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(-x+14\right)
ຕົວປະກອບຈາກ x.
-x^{2}+14x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}}}{2\left(-1\right)}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-14±14}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 14^{2}.
x=\frac{-14±14}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=\frac{0}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-14±14}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -14 ໃສ່ 14.
x=0
ຫານ 0 ດ້ວຍ -2.
x=-\frac{28}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-14±14}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 14 ອອກຈາກ -14.
x=14
ຫານ -28 ດ້ວຍ -2.
-x^{2}+14x=-x\left(x-14\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ 14 ເປັນ x_{2}.