ແກ້ສຳລັບ m
m\in \mathrm{R}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
m^{2}-4m+8=0
ເພື່ອແກ້ໄຂຄວາມບໍ່ເທົ່າກັນ, ໃຫ້ວາງຕົວປະກອບໄວ້ຊ້າຍມື. Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 8}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -4 ໃຫ້ b ແລະ 8 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
m=\frac{4±\sqrt{-16}}{2}
ເລີ່ມຄຳນວນ.
0^{2}-4\times 0+8=8
ເນື່ອງຈາກຮາກຂອງຈຳນວນລົບບໍ່ໄດ້ຖືກລະບຸໄວ້ໃນຊ່ອງຂໍ້ມູນຈິງ, ຈຶ່ງບໍ່ມີຄຳຕອບ. ນິພົດ m^{2}-4m+8 ມີສັນຍາລັກດຽວກັນກັບ m. ເພື່ອກວດສອບສັນຍາລັກ, ໃຫ້ຄຳນວນຄ່າຂອງນິພົດສຳລັບ m=0.
m\in \mathrm{R}
ຄ່າຂອງນິພົດ m^{2}-4m+8 ເປັນບວກສະເໝີ. ບໍ່ມີສິດສຳລັບ m\in \mathrm{R}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}