Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ m
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

m^{2}-16m+48=0
ເພື່ອແກ້ໄຂຄວາມບໍ່ເທົ່າກັນ, ໃຫ້ວາງຕົວປະກອບໄວ້ຊ້າຍມື. Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\times 48}}{2}
ສົມຜົນທັງໝົດຈາກແບບຟອມ ax^{2}+bx+c=0 ສາມາດແກ້ໄຂໄດ້ໂດຍໃຊ້ສູດຄຳນວນກຳລັງສອງ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ແທນ 1 ໃຫ້ a, -16 ໃຫ້ b ແລະ 48 ໃຫ້ c ໃນສູດຄຳນວນກຳລັງສອງ.
m=\frac{16±8}{2}
ເລີ່ມຄຳນວນ.
m=12 m=4
ແກ້ສົມຜົນ m=\frac{16±8}{2} ເມື່ອ ± ເປັນບວກ ແລະ ± ເປັນລົບ.
\left(m-12\right)\left(m-4\right)\leq 0
ຂຽນຄວາມບໍ່ເທົ່າກັນຄືນໃໝ່ໂດຍໃຊ້ວິທີທີ່ໄດ້ຮັບມາ.
m-12\geq 0 m-4\leq 0
ເພື່ອໃຫ້ຜະລິດຕະພັນເປັນ ≤0, ໜຶ່ງໃນຄ່າຂອງ m-12 ແລະ m-4 ຈະຕ້ອງເປັນ ≥0 ແລະ ຄ່າອື່ນຕ້ອງເປັນ ≤0. ພິຈາລະນາກໍລະນີເມື່ອ m-12\geq 0 ແລະ m-4\leq 0.
m\in \emptyset
ນີ້ເປັນ false ສຳລັບ m ທຸກອັນ.
m-4\geq 0 m-12\leq 0
ພິຈາລະນາກໍລະນີເມື່ອ m-12\leq 0 ແລະ m-4\geq 0.
m\in \begin{bmatrix}4,12\end{bmatrix}
ວິທີແກ້ທີ່ຈັດການຄວາມບໍ່ເທົ່າກັນທັງສອງໄດ້ແມ່ນ m\in \left[4,12\right].
m\in \begin{bmatrix}4,12\end{bmatrix}
ວິທີແກ້ສຸດທ້າຍແມ່ນເປັນການຮວມວິທີການທີ່ຊອກມາໄດ້.