ປະເມີນ
\frac{m^{2}}{80}
ບອກຄວາມແຕກຕ່າງ w.r.t. m
\frac{m}{40}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{mm}{80}
ສະແດງ \frac{m}{80}m ເປັນໜຶ່ງເສດສ່ວນ.
\frac{m^{2}}{80}
ຄູນ m ກັບ m ເພື່ອໃຫ້ໄດ້ m^{2}.
\frac{1}{80}m^{1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1})+m^{1}\frac{\mathrm{d}}{\mathrm{d}m}(\frac{1}{80}m^{1})
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜະລິດຕະພັນຂອງສອງຟັງຊັນແມ່ນຟັງທຳອິດ ຄູນໃຫ້ກັບອະນຸພັນຂອງຟັງຊັນທີສອງ ບວກໃຫ້ກັບຟັງຊັນທີສອງ ຄູນໃຫ້ອະນຸພັນຂອງຟັງຊັນທຳອິດ.
\frac{1}{80}m^{1}m^{1-1}+m^{1}\times \frac{1}{80}m^{1-1}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{1}{80}m^{1}m^{0}+m^{1}\times \frac{1}{80}m^{0}
ເຮັດໃຫ້ງ່າຍ.
\frac{1}{80}m^{1}+\frac{1}{80}m^{1}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{1+1}{80}m^{1}
ຮວມຄຳສັບ.
\frac{1}{40}m^{1}
ເພີ່ມ \frac{1}{80} ໃສ່ \frac{1}{80} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\frac{1}{40}m
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}