Skip ໄປຫາເນື້ອຫາຫຼັກ
ບອກຄວາມແຕກຕ່າງ w.r.t. t
Tick mark Image
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\left(t^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}t}(t^{1})-t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{1}-6)}{\left(t^{1}-6\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(t^{1}-6\right)t^{1-1}-t^{1}t^{1-1}}{\left(t^{1}-6\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(t^{1}-6\right)t^{0}-t^{1}t^{0}}{\left(t^{1}-6\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{t^{1}t^{0}-6t^{0}-t^{1}t^{0}}{\left(t^{1}-6\right)^{2}}
ຂະຫຍາຍໂດຍໃຊ້ຄຸນສົມບັດທີ່ແບ່ງໄດ້.
\frac{t^{1}-6t^{0}-t^{1}}{\left(t^{1}-6\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{\left(1-1\right)t^{1}-6t^{0}}{\left(t^{1}-6\right)^{2}}
ຮວມຄຳສັບ.
\frac{-6t^{0}}{\left(t^{1}-6\right)^{2}}
ລົບ 1 ອອກຈາກ 1.
\frac{-6t^{0}}{\left(t-6\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{-6}{\left(t-6\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.