Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{x\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x^{2}+1}{x^{2}+1}.
\frac{x\left(x^{2}+1\right)+1}{x^{2}+1}
ເນື່ອງຈາກ \frac{x\left(x^{2}+1\right)}{x^{2}+1} ແລະ \frac{1}{x^{2}+1} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{3}+x+1}{x^{2}+1}
ຄູນໃນເສດສ່ວນ x\left(x^{2}+1\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x^{2}+1\right)}{x^{2}+1}+\frac{1}{x^{2}+1})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x^{2}+1}{x^{2}+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x^{2}+1\right)+1}{x^{2}+1})
ເນື່ອງຈາກ \frac{x\left(x^{2}+1\right)}{x^{2}+1} ແລະ \frac{1}{x^{2}+1} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}+x+1}{x^{2}+1})
ຄູນໃນເສດສ່ວນ x\left(x^{2}+1\right)+1.
\frac{\left(x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+x^{1}+1)-\left(x^{3}+x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+1)}{\left(x^{2}+1\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{2}+1\right)\left(3x^{3-1}+x^{1-1}\right)-\left(x^{3}+x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}+1\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{2}+1\right)\left(3x^{2}+x^{0}\right)-\left(x^{3}+x^{1}+1\right)\times 2x^{1}}{\left(x^{2}+1\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{2}\times 3x^{2}+x^{2}x^{0}+3x^{2}+x^{0}-\left(x^{3}+x^{1}+1\right)\times 2x^{1}}{\left(x^{2}+1\right)^{2}}
ຄູນ x^{2}+1 ໃຫ້ກັບ 3x^{2}+x^{0}.
\frac{x^{2}\times 3x^{2}+x^{2}x^{0}+3x^{2}+x^{0}-\left(x^{3}\times 2x^{1}+x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
ຄູນ x^{3}+x^{1}+1 ໃຫ້ກັບ 2x^{1}.
\frac{3x^{2+2}+x^{2}+3x^{2}+x^{0}-\left(2x^{3+1}+2x^{1+1}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{3x^{4}+x^{2}+3x^{2}+x^{0}-\left(2x^{4}+2x^{2}+2x^{1}\right)}{\left(x^{2}+1\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{4}-x^{2}+3x^{2}+x^{0}-2x^{1}}{\left(x^{2}+1\right)^{2}}
ຮວມຄຳສັບ.
\frac{x^{4}-x^{2}+3x^{2}+x^{0}-2x}{\left(x^{2}+1\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{x^{4}-x^{2}+3x^{2}+1-2x}{\left(x^{2}+1\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.