ຕົວປະກອບ
x\left(8x-5\right)
ປະເມີນ
x\left(8x-5\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x\left(8x-5\right)
ຕົວປະກອບຈາກ x.
8x^{2}-5x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 8}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-5\right)±5}{2\times 8}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-5\right)^{2}.
x=\frac{5±5}{2\times 8}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±5}{16}
ຄູນ 2 ໃຫ້ກັບ 8.
x=\frac{10}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±5}{16} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 5.
x=\frac{5}{8}
ຫຼຸດເສດສ່ວນ \frac{10}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=\frac{0}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±5}{16} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ 5.
x=0
ຫານ 0 ດ້ວຍ 16.
8x^{2}-5x=8\left(x-\frac{5}{8}\right)x
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{5}{8} ເປັນ x_{1} ແລະ 0 ເປັນ x_{2}.
8x^{2}-5x=8\times \frac{8x-5}{8}x
ລົບ \frac{5}{8} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
8x^{2}-5x=\left(8x-5\right)x
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 8 ໃນ 8 ແລະ 8.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}