Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\left(3x-4\right)
ຕົວປະກອບຈາກ x.
3x^{2}-4x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 3}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-4\right)±4}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ \left(-4\right)^{2}.
x=\frac{4±4}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{4±4}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{8}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±4}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 4.
x=\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{8}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=\frac{0}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±4}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 4 ອອກຈາກ 4.
x=0
ຫານ 0 ດ້ວຍ 6.
3x^{2}-4x=3\left(x-\frac{4}{3}\right)x
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{4}{3} ເປັນ x_{1} ແລະ 0 ເປັນ x_{2}.
3x^{2}-4x=3\times \frac{3x-4}{3}x
ລົບ \frac{4}{3} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
3x^{2}-4x=\left(3x-4\right)x
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 3 ໃນ 3 ແລະ 3.