ຕົວປະກອບ
\left(2x-5\right)\left(x+1\right)
ປະເມີນ
\left(2x-5\right)\left(x+1\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-3 ab=2\left(-5\right)=-10
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 2x^{2}+ax+bx-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-10 2,-5
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -10.
1-10=-9 2-5=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-5 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -3.
\left(2x^{2}-5x\right)+\left(2x-5\right)
ຂຽນ 2x^{2}-3x-5 ຄືນໃໝ່ເປັນ \left(2x^{2}-5x\right)+\left(2x-5\right).
x\left(2x-5\right)+2x-5
ແຍກ x ອອກໃນ 2x^{2}-5x.
\left(2x-5\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ 2x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2x^{2}-3x-5=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
ເພີ່ມ 9 ໃສ່ 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{3±7}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -3 ແມ່ນ 3.
x=\frac{3±7}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{10}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±7}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 3 ໃສ່ 7.
x=\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{10}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=-\frac{4}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±7}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 3.
x=-1
ຫານ -4 ດ້ວຍ 4.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x-\left(-1\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{5}{2} ເປັນ x_{1} ແລະ -1 ເປັນ x_{2}.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x+1\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
2x^{2}-3x-5=2\times \frac{2x-5}{2}\left(x+1\right)
ລົບ \frac{5}{2} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
2x^{2}-3x-5=\left(2x-5\right)\left(x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 2 ໃນ 2 ແລະ 2.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}