Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
ຍົກເລີກ x+3 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
ຍົກເລີກ x+1 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-1 ກັບ x+2 ແມ່ນ \left(x-1\right)\left(x+2\right). ຄູນ \frac{x+1}{x-1} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x+1}{x+2} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ເນື່ອງຈາກ \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} ແລະ \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ຄູນໃນເສດສ່ວນ \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
ຄູນ \frac{3x+3}{\left(x-1\right)\left(x+2\right)} ກັບ \frac{x+2}{x+1} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
ຍົກເລີກ x+2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
ປັດໃຈທີ່ນິພົດບໍ່ໄດ້ສ້າງເທື່ອ.
\frac{3}{x-1}
ຍົກເລີກ x+1 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{x^{2}+4x+3}{x^{2}+2x-3}.
\left(\frac{x+1}{x-1}-\frac{x^{2}+2x+1}{x^{2}+3x+2}\right)\times \frac{x+2}{x+1}
ຍົກເລີກ x+3 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\frac{x+1}{x-1}-\frac{\left(x+1\right)^{2}}{\left(x+1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{x^{2}+2x+1}{x^{2}+3x+2}.
\left(\frac{x+1}{x-1}-\frac{x+1}{x+2}\right)\times \frac{x+2}{x+1}
ຍົກເລີກ x+1 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\right)\times \frac{x+2}{x+1}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-1 ກັບ x+2 ແມ່ນ \left(x-1\right)\left(x+2\right). ຄູນ \frac{x+1}{x-1} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x+1}{x+2} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ເນື່ອງຈາກ \frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)} ແລະ \frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+2x+x+2-x^{2}+x-x+1}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ຄູນໃນເສດສ່ວນ \left(x+1\right)\left(x+2\right)-\left(x+1\right)\left(x-1\right).
\frac{3x+3}{\left(x-1\right)\left(x+2\right)}\times \frac{x+2}{x+1}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+x+2-x^{2}+x-x+1.
\frac{\left(3x+3\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)\left(x+1\right)}
ຄູນ \frac{3x+3}{\left(x-1\right)\left(x+2\right)} ກັບ \frac{x+2}{x+1} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ.
\frac{3x+3}{\left(x-1\right)\left(x+1\right)}
ຍົກເລີກ x+2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
ປັດໃຈທີ່ນິພົດບໍ່ໄດ້ສ້າງເທື່ອ.
\frac{3}{x-1}
ຍົກເລີກ x+1 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.