Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{3}{x+2}+\frac{x+2}{x+2}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ 1 ໃຫ້ກັບ \frac{x+2}{x+2}.
\frac{3+x+2}{x+2}
ເນື່ອງຈາກ \frac{3}{x+2} ແລະ \frac{x+2}{x+2} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{5+x}{x+2}
ຮວມຂໍ້ກຳນົດໃນ 3+x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x+2}+\frac{x+2}{x+2})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ 1 ໃຫ້ກັບ \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3+x+2}{x+2})
ເນື່ອງຈາກ \frac{3}{x+2} ແລະ \frac{x+2}{x+2} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+x}{x+2})
ຮວມຂໍ້ກຳນົດໃນ 3+x+2.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+5)-\left(x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{1}+2\right)x^{1-1}-\left(x^{1}+5\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{1}+2\right)x^{0}-\left(x^{1}+5\right)x^{0}}{\left(x^{1}+2\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{x^{1}x^{0}+2x^{0}-\left(x^{1}x^{0}+5x^{0}\right)}{\left(x^{1}+2\right)^{2}}
ຂະຫຍາຍໂດຍໃຊ້ຄຸນສົມບັດທີ່ແບ່ງໄດ້.
\frac{x^{1}+2x^{0}-\left(x^{1}+5x^{0}\right)}{\left(x^{1}+2\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{x^{1}+2x^{0}-x^{1}-5x^{0}}{\left(x^{1}+2\right)^{2}}
ລຶບວົງເລັບທີ່ບໍ່ຈຳເປັນອອກ.
\frac{\left(1-1\right)x^{1}+\left(2-5\right)x^{0}}{\left(x^{1}+2\right)^{2}}
ຮວມຄຳສັບ.
\frac{-3x^{0}}{\left(x^{1}+2\right)^{2}}
ແຍກ 1 ອອກຈາກ 1 ແລະ 5 ອອກຈາກ 2.
\frac{-3x^{0}}{\left(x+2\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{-3}{\left(x+2\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.