Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ b
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=1 ab=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ b^{2}+b-6 ໂດຍໃຊ້ສູດຄຳນວນ b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,6 -2,3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
-1+6=5 -2+3=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-2 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 1.
\left(b-2\right)\left(b+3\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(b+a\right)\left(b+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
b=2 b=-3
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ b-2=0 ແລະ b+3=0.
a+b=1 ab=1\left(-6\right)=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ b^{2}+ab+bb-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,6 -2,3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
-1+6=5 -2+3=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-2 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 1.
\left(b^{2}-2b\right)+\left(3b-6\right)
ຂຽນ b^{2}+b-6 ຄືນໃໝ່ເປັນ \left(b^{2}-2b\right)+\left(3b-6\right).
b\left(b-2\right)+3\left(b-2\right)
ຕົວຫານ b ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(b-2\right)\left(b+3\right)
ແຍກຄຳທົ່ວໄປ b-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
b=2 b=-3
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ b-2=0 ແລະ b+3=0.
b^{2}+b-6=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
b=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 1 ສຳລັບ b ແລະ -6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
b=\frac{-1±\sqrt{1+24}}{2}
ຄູນ -4 ໃຫ້ກັບ -6.
b=\frac{-1±\sqrt{25}}{2}
ເພີ່ມ 1 ໃສ່ 24.
b=\frac{-1±5}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 25.
b=\frac{4}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ b=\frac{-1±5}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ 5.
b=2
ຫານ 4 ດ້ວຍ 2.
b=-\frac{6}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ b=\frac{-1±5}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ -1.
b=-3
ຫານ -6 ດ້ວຍ 2.
b=2 b=-3
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
b^{2}+b-6=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
b^{2}+b-6-\left(-6\right)=-\left(-6\right)
ເພີ່ມ 6 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
b^{2}+b=-\left(-6\right)
ການລົບ -6 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
b^{2}+b=6
ລົບ -6 ອອກຈາກ 0.
b^{2}+b+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
b^{2}+b+\frac{1}{4}=6+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
b^{2}+b+\frac{1}{4}=\frac{25}{4}
ເພີ່ມ 6 ໃສ່ \frac{1}{4}.
\left(b+\frac{1}{2}\right)^{2}=\frac{25}{4}
ຕົວປະກອບ b^{2}+b+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
b+\frac{1}{2}=\frac{5}{2} b+\frac{1}{2}=-\frac{5}{2}
ເຮັດໃຫ້ງ່າຍ.
b=2 b=-3
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.