Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ a
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a^{2}+a-5=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-1±\sqrt{1^{2}-4\left(-5\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 1 ສຳລັບ b ແລະ -5 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\left(-5\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
a=\frac{-1±\sqrt{1+20}}{2}
ຄູນ -4 ໃຫ້ກັບ -5.
a=\frac{-1±\sqrt{21}}{2}
ເພີ່ມ 1 ໃສ່ 20.
a=\frac{\sqrt{21}-1}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-1±\sqrt{21}}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ \sqrt{21}.
a=\frac{-\sqrt{21}-1}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-1±\sqrt{21}}{2} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{21} ອອກຈາກ -1.
a=\frac{\sqrt{21}-1}{2} a=\frac{-\sqrt{21}-1}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
a^{2}+a-5=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
a^{2}+a-5-\left(-5\right)=-\left(-5\right)
ເພີ່ມ 5 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
a^{2}+a=-\left(-5\right)
ການລົບ -5 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
a^{2}+a=5
ລົບ -5 ອອກຈາກ 0.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
a^{2}+a+\frac{1}{4}=5+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
a^{2}+a+\frac{1}{4}=\frac{21}{4}
ເພີ່ມ 5 ໃສ່ \frac{1}{4}.
\left(a+\frac{1}{2}\right)^{2}=\frac{21}{4}
ຕົວປະກອບ a^{2}+a+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
a+\frac{1}{2}=\frac{\sqrt{21}}{2} a+\frac{1}{2}=-\frac{\sqrt{21}}{2}
ເຮັດໃຫ້ງ່າຍ.
a=\frac{\sqrt{21}-1}{2} a=\frac{-\sqrt{21}-1}{2}
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.