Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a\left(a+1\right)
ຕົວປະກອບຈາກ a.
a^{2}+a=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
a=\frac{-1±\sqrt{1^{2}}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
a=\frac{-1±1}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1^{2}.
a=\frac{0}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-1±1}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ 1.
a=0
ຫານ 0 ດ້ວຍ 2.
a=-\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ a=\frac{-1±1}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -1.
a=-1
ຫານ -2 ດ້ວຍ 2.
a^{2}+a=a\left(a-\left(-1\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ -1 ເປັນ x_{2}.
a^{2}+a=a\left(a+1\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.