Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=3 ab=-\left(-2\right)=2
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ -x^{2}+ax+bx-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=2 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(-x^{2}+2x\right)+\left(x-2\right)
ຂຽນ -x^{2}+3x-2 ຄືນໃໝ່ເປັນ \left(-x^{2}+2x\right)+\left(x-2\right).
-x\left(x-2\right)+x-2
ແຍກ -x ອອກໃນ -x^{2}+2x.
\left(x-2\right)\left(-x+1\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
-x^{2}+3x-2=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 3.
x=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ -2.
x=\frac{-3±\sqrt{1}}{2\left(-1\right)}
ເພີ່ມ 9 ໃສ່ -8.
x=\frac{-3±1}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 1.
x=\frac{-3±1}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=-\frac{2}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-3±1}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -3 ໃສ່ 1.
x=1
ຫານ -2 ດ້ວຍ -2.
x=-\frac{4}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-3±1}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -3.
x=2
ຫານ -4 ດ້ວຍ -2.
-x^{2}+3x-2=-\left(x-1\right)\left(x-2\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 1 ເປັນ x_{1} ແລະ 2 ເປັນ x_{2}.