ຕົວປະກອບ
\left(x-5\right)\left(x-1\right)
ປະເມີນ
\left(x-5\right)\left(x-1\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-6 ab=1\times 5=5
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx+5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=-5 b=-1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x^{2}-5x\right)+\left(-x+5\right)
ຂຽນ x^{2}-6x+5 ຄືນໃໝ່ເປັນ \left(x^{2}-5x\right)+\left(-x+5\right).
x\left(x-5\right)-\left(x-5\right)
ຕົວຫານ x ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(x-5\right)\left(x-1\right)
ແຍກຄຳທົ່ວໄປ x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x^{2}-6x+5=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5}}{2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -6.
x=\frac{-\left(-6\right)±\sqrt{36-20}}{2}
ຄູນ -4 ໃຫ້ກັບ 5.
x=\frac{-\left(-6\right)±\sqrt{16}}{2}
ເພີ່ມ 36 ໃສ່ -20.
x=\frac{-\left(-6\right)±4}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 16.
x=\frac{6±4}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -6 ແມ່ນ 6.
x=\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±4}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 6 ໃສ່ 4.
x=5
ຫານ 10 ດ້ວຍ 2.
x=\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{6±4}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 4 ອອກຈາກ 6.
x=1
ຫານ 2 ດ້ວຍ 2.
x^{2}-6x+5=\left(x-5\right)\left(x-1\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 5 ເປັນ x_{1} ແລະ 1 ເປັນ x_{2}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}