Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2x^{2}-3x=9
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
2x^{2}-3x-9=0
ລົບ 9 ອອກຈາກທັງສອງຂ້າງ.
a+b=-3 ab=2\left(-9\right)=-18
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 2x^{2}+ax+bx-9. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-18 2,-9 3,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -18.
1-18=-17 2-9=-7 3-6=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=3
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -3.
\left(2x^{2}-6x\right)+\left(3x-9\right)
ຂຽນ 2x^{2}-3x-9 ຄືນໃໝ່ເປັນ \left(2x^{2}-6x\right)+\left(3x-9\right).
2x\left(x-3\right)+3\left(x-3\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(2x+3\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=3 x=-\frac{3}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-3=0 ແລະ 2x+3=0.
2x^{2}-3x=9
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
2x^{2}-3x-9=0
ລົບ 9 ອອກຈາກທັງສອງຂ້າງ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 2 ສຳລັບ a, -3 ສຳລັບ b ແລະ -9 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -9.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
ເພີ່ມ 9 ໃສ່ 72.
x=\frac{-\left(-3\right)±9}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 81.
x=\frac{3±9}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -3 ແມ່ນ 3.
x=\frac{3±9}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{12}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±9}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 3 ໃສ່ 9.
x=3
ຫານ 12 ດ້ວຍ 4.
x=-\frac{6}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±9}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 9 ອອກຈາກ 3.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-6}{4} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=3 x=-\frac{3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
2x^{2}-3x=9
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
ຫານທັງສອງຂ້າງດ້ວຍ 2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
ການຫານດ້ວຍ 2 ຈະຍົກເລີກການຄູນດ້ວຍ 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
ຫານ -\frac{3}{2}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{3}{4}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{3}{4} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{3}{4} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
ເພີ່ມ \frac{9}{2} ໃສ່ \frac{9}{16} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
ຕົວປະກອບ x^{2}-\frac{3}{2}x+\frac{9}{16}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
ເຮັດໃຫ້ງ່າຍ.
x=3 x=-\frac{3}{2}
ເພີ່ມ \frac{3}{4} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.