Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-30 ab=9\times 25=225
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 9x^{2}+ax+bx+25. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-15 b=-15
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -30.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
ຂຽນ 9x^{2}-30x+25 ຄືນໃໝ່ເປັນ \left(9x^{2}-15x\right)+\left(-15x+25\right).
3x\left(3x-5\right)-5\left(3x-5\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ -5 ໃນກຸ່ມທີສອງ.
\left(3x-5\right)\left(3x-5\right)
ແຍກຄຳທົ່ວໄປ 3x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(3x-5\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
factor(9x^{2}-30x+25)
ຕຣີນາມນີ້ມີຮູບແບບຂອງຕຣີນາມແບບກຳລັງສອງ, ບາງຄັ້ງຄູນດ້ວຍຕົວປະກອບທົ່ວໄປ. ຕຣີນາມກຳລັງສອງສາມາດຖືກໃຊ້ເປັນຕົວປະກອບໄດ້ໂດຍການຊອກຫາຮາກຂັ້ນສອງຂອງພົດນຳໜ້າ ແລະ ຕາມຫຼັງໄດ້.
gcf(9,-30,25)=1
ຊອກຫາຕົວປະກອບທົ່ວໄປທີ່ຫຼາຍທີ່ສຸດຂອງຄ່າສຳປະສິດ.
\sqrt{9x^{2}}=3x
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດນຳ, 9x^{2}.
\sqrt{25}=5
ຊອກຫາຈຳນວນຮາກຂັ້ນສອງຂອງພົດຕາມ, 25.
\left(3x-5\right)^{2}
ກຳລັງສອງແບບຕຣີນາມແມ່ນກຳລັງສອງຂອງທະວິນາມທີ່ຜົນຮວມ ຫຼື ຄວາມແຕກຕ່າງຂອງຮາກກຳລັງສອງຂອງພົດນຳໜ້າ ຫຼື ຕາມຫຼັງ, ດ້ວຍເຄື່ອງໝາຍທີ່ລະບຸຕາມເຄື່ອງໝາຍຂອງພົດທາງກາງຂອງກຳລັງສອງແບບຕຣີນາມ.
9x^{2}-30x+25=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
ຄູນ -4 ໃຫ້ກັບ 9.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
ຄູນ -36 ໃຫ້ກັບ 25.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
ເພີ່ມ 900 ໃສ່ -900.
x=\frac{-\left(-30\right)±0}{2\times 9}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=\frac{30±0}{2\times 9}
ຈຳນວນກົງກັນຂ້າມຂອງ -30 ແມ່ນ 30.
x=\frac{30±0}{18}
ຄູນ 2 ໃຫ້ກັບ 9.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{5}{3} ເປັນ x_{1} ແລະ \frac{5}{3} ເປັນ x_{2}.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
ລົບ \frac{5}{3} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
ລົບ \frac{5}{3} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
ຄູນ \frac{3x-5}{3} ກັບ \frac{3x-5}{3} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
ຄູນ 3 ໃຫ້ກັບ 3.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 9 ໃນ 9 ແລະ 9.