Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=30 ab=9\times 25=225
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 9x^{2}+ax+bx+25. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,225 3,75 5,45 9,25 15,15
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=15 b=15
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 30.
\left(9x^{2}+15x\right)+\left(15x+25\right)
ຂຽນ 9x^{2}+30x+25 ຄືນໃໝ່ເປັນ \left(9x^{2}+15x\right)+\left(15x+25\right).
3x\left(3x+5\right)+5\left(3x+5\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(3x+5\right)\left(3x+5\right)
ແຍກຄຳທົ່ວໄປ 3x+5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
\left(3x+5\right)^{2}
ຂຽນຄືນໃໝ່ເປັນຮາກທະວິນາມ.
x=-\frac{5}{3}
ເພື່ອຊອກຫາສົມຜົນ, ໃຫ້ແກ້ໄຂ 3x+5=0.
9x^{2}+30x+25=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-30±\sqrt{30^{2}-4\times 9\times 25}}{2\times 9}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 9 ສຳລັບ a, 30 ສຳລັບ b ແລະ 25 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 9\times 25}}{2\times 9}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 30.
x=\frac{-30±\sqrt{900-36\times 25}}{2\times 9}
ຄູນ -4 ໃຫ້ກັບ 9.
x=\frac{-30±\sqrt{900-900}}{2\times 9}
ຄູນ -36 ໃຫ້ກັບ 25.
x=\frac{-30±\sqrt{0}}{2\times 9}
ເພີ່ມ 900 ໃສ່ -900.
x=-\frac{30}{2\times 9}
ເອົາຮາກຂັ້ນສອງຂອງ 0.
x=-\frac{30}{18}
ຄູນ 2 ໃຫ້ກັບ 9.
x=-\frac{5}{3}
ຫຼຸດເສດສ່ວນ \frac{-30}{18} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
9x^{2}+30x+25=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
9x^{2}+30x+25-25=-25
ລົບ 25 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
9x^{2}+30x=-25
ການລົບ 25 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{9x^{2}+30x}{9}=-\frac{25}{9}
ຫານທັງສອງຂ້າງດ້ວຍ 9.
x^{2}+\frac{30}{9}x=-\frac{25}{9}
ການຫານດ້ວຍ 9 ຈະຍົກເລີກການຄູນດ້ວຍ 9.
x^{2}+\frac{10}{3}x=-\frac{25}{9}
ຫຼຸດເສດສ່ວນ \frac{30}{9} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(\frac{5}{3}\right)^{2}
ຫານ \frac{10}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{-25+25}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=0
ເພີ່ມ -\frac{25}{9} ໃສ່ \frac{25}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{5}{3}\right)^{2}=0
ຕົວປະກອບ x^{2}+\frac{10}{3}x+\frac{25}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{0}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{3}=0 x+\frac{5}{3}=0
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{5}{3} x=-\frac{5}{3}
ລົບ \frac{5}{3} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
x=-\frac{5}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ. ວິທີແກ້ແມ່ນຄືກັນ.