Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-14 ab=8\left(-15\right)=-120
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 8x^{2}+ax+bx-15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-20 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -14.
\left(8x^{2}-20x\right)+\left(6x-15\right)
ຂຽນ 8x^{2}-14x-15 ຄືນໃໝ່ເປັນ \left(8x^{2}-20x\right)+\left(6x-15\right).
4x\left(2x-5\right)+3\left(2x-5\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(2x-5\right)\left(4x+3\right)
ແຍກຄຳທົ່ວໄປ 2x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{5}{2} x=-\frac{3}{4}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2x-5=0 ແລະ 4x+3=0.
8x^{2}-14x-15=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 8 ສຳລັບ a, -14 ສຳລັບ b ແລະ -15 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 8\left(-15\right)}}{2\times 8}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -14.
x=\frac{-\left(-14\right)±\sqrt{196-32\left(-15\right)}}{2\times 8}
ຄູນ -4 ໃຫ້ກັບ 8.
x=\frac{-\left(-14\right)±\sqrt{196+480}}{2\times 8}
ຄູນ -32 ໃຫ້ກັບ -15.
x=\frac{-\left(-14\right)±\sqrt{676}}{2\times 8}
ເພີ່ມ 196 ໃສ່ 480.
x=\frac{-\left(-14\right)±26}{2\times 8}
ເອົາຮາກຂັ້ນສອງຂອງ 676.
x=\frac{14±26}{2\times 8}
ຈຳນວນກົງກັນຂ້າມຂອງ -14 ແມ່ນ 14.
x=\frac{14±26}{16}
ຄູນ 2 ໃຫ້ກັບ 8.
x=\frac{40}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{14±26}{16} ເມື່ອ ± ບວກ. ເພີ່ມ 14 ໃສ່ 26.
x=\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{40}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x=-\frac{12}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{14±26}{16} ເມື່ອ ± ເປັນລົບ. ລົບ 26 ອອກຈາກ 14.
x=-\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-12}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=\frac{5}{2} x=-\frac{3}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
8x^{2}-14x-15=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
8x^{2}-14x-15-\left(-15\right)=-\left(-15\right)
ເພີ່ມ 15 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
8x^{2}-14x=-\left(-15\right)
ການລົບ -15 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
8x^{2}-14x=15
ລົບ -15 ອອກຈາກ 0.
\frac{8x^{2}-14x}{8}=\frac{15}{8}
ຫານທັງສອງຂ້າງດ້ວຍ 8.
x^{2}+\left(-\frac{14}{8}\right)x=\frac{15}{8}
ການຫານດ້ວຍ 8 ຈະຍົກເລີກການຄູນດ້ວຍ 8.
x^{2}-\frac{7}{4}x=\frac{15}{8}
ຫຼຸດເສດສ່ວນ \frac{-14}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{7}{8}\right)^{2}
ຫານ -\frac{7}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{7}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{7}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{15}{8}+\frac{49}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{7}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{169}{64}
ເພີ່ມ \frac{15}{8} ໃສ່ \frac{49}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{7}{8}\right)^{2}=\frac{169}{64}
ຕົວປະກອບ x^{2}-\frac{7}{4}x+\frac{49}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{7}{8}=\frac{13}{8} x-\frac{7}{8}=-\frac{13}{8}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{5}{2} x=-\frac{3}{4}
ເພີ່ມ \frac{7}{8} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.