Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=10 ab=8\left(-7\right)=-56
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 8x^{2}+ax+bx-7. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,56 -2,28 -4,14 -7,8
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-4 b=14
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 10.
\left(8x^{2}-4x\right)+\left(14x-7\right)
ຂຽນ 8x^{2}+10x-7 ຄືນໃໝ່ເປັນ \left(8x^{2}-4x\right)+\left(14x-7\right).
4x\left(2x-1\right)+7\left(2x-1\right)
ຕົວຫານ 4x ໃນຕອນທຳອິດ ແລະ 7 ໃນກຸ່ມທີສອງ.
\left(2x-1\right)\left(4x+7\right)
ແຍກຄຳທົ່ວໄປ 2x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{1}{2} x=-\frac{7}{4}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2x-1=0 ແລະ 4x+7=0.
8x^{2}+10x-7=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-10±\sqrt{10^{2}-4\times 8\left(-7\right)}}{2\times 8}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 8 ສຳລັບ a, 10 ສຳລັບ b ແລະ -7 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 8\left(-7\right)}}{2\times 8}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 10.
x=\frac{-10±\sqrt{100-32\left(-7\right)}}{2\times 8}
ຄູນ -4 ໃຫ້ກັບ 8.
x=\frac{-10±\sqrt{100+224}}{2\times 8}
ຄູນ -32 ໃຫ້ກັບ -7.
x=\frac{-10±\sqrt{324}}{2\times 8}
ເພີ່ມ 100 ໃສ່ 224.
x=\frac{-10±18}{2\times 8}
ເອົາຮາກຂັ້ນສອງຂອງ 324.
x=\frac{-10±18}{16}
ຄູນ 2 ໃຫ້ກັບ 8.
x=\frac{8}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±18}{16} ເມື່ອ ± ບວກ. ເພີ່ມ -10 ໃສ່ 18.
x=\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{8}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 8.
x=-\frac{28}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-10±18}{16} ເມື່ອ ± ເປັນລົບ. ລົບ 18 ອອກຈາກ -10.
x=-\frac{7}{4}
ຫຼຸດເສດສ່ວນ \frac{-28}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=\frac{1}{2} x=-\frac{7}{4}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
8x^{2}+10x-7=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
8x^{2}+10x-7-\left(-7\right)=-\left(-7\right)
ເພີ່ມ 7 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
8x^{2}+10x=-\left(-7\right)
ການລົບ -7 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
8x^{2}+10x=7
ລົບ -7 ອອກຈາກ 0.
\frac{8x^{2}+10x}{8}=\frac{7}{8}
ຫານທັງສອງຂ້າງດ້ວຍ 8.
x^{2}+\frac{10}{8}x=\frac{7}{8}
ການຫານດ້ວຍ 8 ຈະຍົກເລີກການຄູນດ້ວຍ 8.
x^{2}+\frac{5}{4}x=\frac{7}{8}
ຫຼຸດເສດສ່ວນ \frac{10}{8} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{7}{8}+\left(\frac{5}{8}\right)^{2}
ຫານ \frac{5}{4}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{8}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{8} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{7}{8}+\frac{25}{64}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{8} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{81}{64}
ເພີ່ມ \frac{7}{8} ໃສ່ \frac{25}{64} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{5}{8}\right)^{2}=\frac{81}{64}
ຕົວປະກອບ x^{2}+\frac{5}{4}x+\frac{25}{64}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{8}=\frac{9}{8} x+\frac{5}{8}=-\frac{9}{8}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{1}{2} x=-\frac{7}{4}
ລົບ \frac{5}{8} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.