Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2\left(4x^{2}+3x\right)
ຕົວປະກອບຈາກ 2.
x\left(4x+3\right)
ພິຈາລະນາ 4x^{2}+3x. ຕົວປະກອບຈາກ x.
2x\left(4x+3\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
8x^{2}+6x=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}}}{2\times 8}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-6±6}{2\times 8}
ເອົາຮາກຂັ້ນສອງຂອງ 6^{2}.
x=\frac{-6±6}{16}
ຄູນ 2 ໃຫ້ກັບ 8.
x=\frac{0}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±6}{16} ເມື່ອ ± ບວກ. ເພີ່ມ -6 ໃສ່ 6.
x=0
ຫານ 0 ດ້ວຍ 16.
x=-\frac{12}{16}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-6±6}{16} ເມື່ອ ± ເປັນລົບ. ລົບ 6 ອອກຈາກ -6.
x=-\frac{3}{4}
ຫຼຸດເສດສ່ວນ \frac{-12}{16} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
8x^{2}+6x=8x\left(x-\left(-\frac{3}{4}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 0 ເປັນ x_{1} ແລະ -\frac{3}{4} ເປັນ x_{2}.
8x^{2}+6x=8x\left(x+\frac{3}{4}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
8x^{2}+6x=8x\times \frac{4x+3}{4}
ເພີ່ມ \frac{3}{4} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
8x^{2}+6x=2x\left(4x+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 4 ໃນ 8 ແລະ 4.