ແກ້ສຳລັບ x
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1,666666667
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
6x^{2}-x-15=0
ລົບ 15 ອອກຈາກທັງສອງຂ້າງ.
a+b=-1 ab=6\left(-15\right)=-90
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 6x^{2}+ax+bx-15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-10 b=9
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(6x^{2}-10x\right)+\left(9x-15\right)
ຂຽນ 6x^{2}-x-15 ຄືນໃໝ່ເປັນ \left(6x^{2}-10x\right)+\left(9x-15\right).
2x\left(3x-5\right)+3\left(3x-5\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(3x-5\right)\left(2x+3\right)
ແຍກຄຳທົ່ວໄປ 3x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{5}{3} x=-\frac{3}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 3x-5=0 ແລະ 2x+3=0.
6x^{2}-x=15
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
6x^{2}-x-15=15-15
ລົບ 15 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
6x^{2}-x-15=0
ການລົບ 15 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, -1 ສຳລັບ b ແລະ -15 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-15\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -15.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\times 6}
ເພີ່ມ 1 ໃສ່ 360.
x=\frac{-\left(-1\right)±19}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 361.
x=\frac{1±19}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±19}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{20}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±19}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ 19.
x=\frac{5}{3}
ຫຼຸດເສດສ່ວນ \frac{20}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=-\frac{18}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±19}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 19 ອອກຈາກ 1.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-18}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=\frac{5}{3} x=-\frac{3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}-x=15
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{6x^{2}-x}{6}=\frac{15}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}-\frac{1}{6}x=\frac{15}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}-\frac{1}{6}x=\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{15}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{12}\right)^{2}
ຫານ -\frac{1}{6}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{12}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{12} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{5}{2}+\frac{1}{144}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{12} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{361}{144}
ເພີ່ມ \frac{5}{2} ໃສ່ \frac{1}{144} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{12}\right)^{2}=\frac{361}{144}
ຕົວປະກອບ x^{2}-\frac{1}{6}x+\frac{1}{144}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{12}=\frac{19}{12} x-\frac{1}{12}=-\frac{19}{12}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{5}{3} x=-\frac{3}{2}
ເພີ່ມ \frac{1}{12} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}