ຕົວປະກອບ
\left(2x-3\right)\left(3x+1\right)
ປະເມີນ
\left(2x-3\right)\left(3x+1\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=-7 ab=6\left(-3\right)=-18
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 6x^{2}+ax+bx-3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-18 2,-9 3,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -18.
1-18=-17 2-9=-7 3-6=-3
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-9 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
ຂຽນ 6x^{2}-7x-3 ຄືນໃໝ່ເປັນ \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
ແຍກ 3x ອອກໃນ 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
ແຍກຄຳທົ່ວໄປ 2x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
6x^{2}-7x-3=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
ເພີ່ມ 49 ໃສ່ 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 121.
x=\frac{7±11}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -7 ແມ່ນ 7.
x=\frac{7±11}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{18}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±11}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 7 ໃສ່ 11.
x=\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{18}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=-\frac{4}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{7±11}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 11 ອອກຈາກ 7.
x=-\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{3}{2} ເປັນ x_{1} ແລະ -\frac{1}{3} ເປັນ x_{2}.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\left(x+\frac{1}{3}\right)
ລົບ \frac{3}{2} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\times \frac{3x+1}{3}
ເພີ່ມ \frac{1}{3} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{2\times 3}
ຄູນ \frac{2x-3}{2} ກັບ \frac{3x+1}{3} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
6x^{2}-7x-3=\left(2x-3\right)\left(3x+1\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 6 ໃນ 6 ແລະ 6.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}