Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-5 ab=6\left(-6\right)=-36
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 6x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-36 2,-18 3,-12 4,-9 6,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-9 b=4
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(6x^{2}-9x\right)+\left(4x-6\right)
ຂຽນ 6x^{2}-5x-6 ຄືນໃໝ່ເປັນ \left(6x^{2}-9x\right)+\left(4x-6\right).
3x\left(2x-3\right)+2\left(2x-3\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(2x-3\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ 2x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{3}{2} x=-\frac{2}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2x-3=0 ແລະ 3x+2=0.
6x^{2}-5x-6=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, -5 ສຳລັບ b ແລະ -6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -6.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
ເພີ່ມ 25 ໃສ່ 144.
x=\frac{-\left(-5\right)±13}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
x=\frac{5±13}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{5±13}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{18}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±13}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 13.
x=\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{18}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=-\frac{8}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±13}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ 5.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-8}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=\frac{3}{2} x=-\frac{2}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}-5x-6=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
6x^{2}-5x-6-\left(-6\right)=-\left(-6\right)
ເພີ່ມ 6 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
6x^{2}-5x=-\left(-6\right)
ການລົບ -6 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
6x^{2}-5x=6
ລົບ -6 ອອກຈາກ 0.
\frac{6x^{2}-5x}{6}=\frac{6}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}-\frac{5}{6}x=\frac{6}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}-\frac{5}{6}x=1
ຫານ 6 ດ້ວຍ 6.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=1+\left(-\frac{5}{12}\right)^{2}
ຫານ -\frac{5}{6}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{12}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{12} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{12} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
ເພີ່ມ 1 ໃສ່ \frac{25}{144}.
\left(x-\frac{5}{12}\right)^{2}=\frac{169}{144}
ຕົວປະກອບ x^{2}-\frac{5}{6}x+\frac{25}{144}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{12}=\frac{13}{12} x-\frac{5}{12}=-\frac{13}{12}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{3}{2} x=-\frac{2}{3}
ເພີ່ມ \frac{5}{12} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.