ຕົວປະກອບ
3\left(x-3\right)\left(2x+5\right)
ປະເມີນ
3\left(x-3\right)\left(2x+5\right)
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
3\left(2x^{2}-x-15\right)
ຕົວປະກອບຈາກ 3.
a+b=-1 ab=2\left(-15\right)=-30
ພິຈາລະນາ 2x^{2}-x-15. ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 2x^{2}+ax+bx-15. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-30 2,-15 3,-10 5,-6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(2x^{2}-6x\right)+\left(5x-15\right)
ຂຽນ 2x^{2}-x-15 ຄືນໃໝ່ເປັນ \left(2x^{2}-6x\right)+\left(5x-15\right).
2x\left(x-3\right)+5\left(x-3\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(x-3\right)\left(2x+5\right)
ແຍກຄຳທົ່ວໄປ x-3 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
3\left(x-3\right)\left(2x+5\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
6x^{2}-3x-45=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-45\right)}}{2\times 6}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-45\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-45\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-3\right)±\sqrt{9+1080}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -45.
x=\frac{-\left(-3\right)±\sqrt{1089}}{2\times 6}
ເພີ່ມ 9 ໃສ່ 1080.
x=\frac{-\left(-3\right)±33}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 1089.
x=\frac{3±33}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -3 ແມ່ນ 3.
x=\frac{3±33}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{36}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±33}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 3 ໃສ່ 33.
x=3
ຫານ 36 ດ້ວຍ 12.
x=-\frac{30}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{3±33}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 33 ອອກຈາກ 3.
x=-\frac{5}{2}
ຫຼຸດເສດສ່ວນ \frac{-30}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
6x^{2}-3x-45=6\left(x-3\right)\left(x-\left(-\frac{5}{2}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 3 ເປັນ x_{1} ແລະ -\frac{5}{2} ເປັນ x_{2}.
6x^{2}-3x-45=6\left(x-3\right)\left(x+\frac{5}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
6x^{2}-3x-45=6\left(x-3\right)\times \frac{2x+5}{2}
ເພີ່ມ \frac{5}{2} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}-3x-45=3\left(x-3\right)\left(2x+5\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 2 ໃນ 6 ແລະ 2.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}