ແກ້ສຳລັບ x
x = \frac{\sqrt{673} + 1}{12} \approx 2,245186962
x=\frac{1-\sqrt{673}}{12}\approx -2,078520295
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
6x^{2}-x=28
ລົບ x ອອກຈາກທັງສອງຂ້າງ.
6x^{2}-x-28=0
ລົບ 28 ອອກຈາກທັງສອງຂ້າງ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-28\right)}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, -1 ສຳລັບ b ແລະ -28 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-28\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-1\right)±\sqrt{1+672}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -28.
x=\frac{-\left(-1\right)±\sqrt{673}}{2\times 6}
ເພີ່ມ 1 ໃສ່ 672.
x=\frac{1±\sqrt{673}}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -1 ແມ່ນ 1.
x=\frac{1±\sqrt{673}}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{\sqrt{673}+1}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{673}}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 1 ໃສ່ \sqrt{673}.
x=\frac{1-\sqrt{673}}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{1±\sqrt{673}}{12} ເມື່ອ ± ເປັນລົບ. ລົບ \sqrt{673} ອອກຈາກ 1.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}-x=28
ລົບ x ອອກຈາກທັງສອງຂ້າງ.
\frac{6x^{2}-x}{6}=\frac{28}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}-\frac{1}{6}x=\frac{28}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}-\frac{1}{6}x=\frac{14}{3}
ຫຼຸດເສດສ່ວນ \frac{28}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{14}{3}+\left(-\frac{1}{12}\right)^{2}
ຫານ -\frac{1}{6}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{12}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{12} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{14}{3}+\frac{1}{144}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{12} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{673}{144}
ເພີ່ມ \frac{14}{3} ໃສ່ \frac{1}{144} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{12}\right)^{2}=\frac{673}{144}
ຕົວປະກອບ x^{2}-\frac{1}{6}x+\frac{1}{144}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{673}{144}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{12}=\frac{\sqrt{673}}{12} x-\frac{1}{12}=-\frac{\sqrt{673}}{12}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
ເພີ່ມ \frac{1}{12} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}