Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=13 ab=6\left(-28\right)=-168
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 6x^{2}+ax+bx-28. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-8 b=21
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 13.
\left(6x^{2}-8x\right)+\left(21x-28\right)
ຂຽນ 6x^{2}+13x-28 ຄືນໃໝ່ເປັນ \left(6x^{2}-8x\right)+\left(21x-28\right).
2x\left(3x-4\right)+7\left(3x-4\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 7 ໃນກຸ່ມທີສອງ.
\left(3x-4\right)\left(2x+7\right)
ແຍກຄຳທົ່ວໄປ 3x-4 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
6x^{2}+13x-28=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 6\left(-28\right)}}{2\times 6}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-13±\sqrt{169-4\times 6\left(-28\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 13.
x=\frac{-13±\sqrt{169-24\left(-28\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-13±\sqrt{169+672}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -28.
x=\frac{-13±\sqrt{841}}{2\times 6}
ເພີ່ມ 169 ໃສ່ 672.
x=\frac{-13±29}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 841.
x=\frac{-13±29}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{16}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-13±29}{12} ເມື່ອ ± ບວກ. ເພີ່ມ -13 ໃສ່ 29.
x=\frac{4}{3}
ຫຼຸດເສດສ່ວນ \frac{16}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=-\frac{42}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-13±29}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 29 ອອກຈາກ -13.
x=-\frac{7}{2}
ຫຼຸດເສດສ່ວນ \frac{-42}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{7}{2}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{4}{3} ເປັນ x_{1} ແລະ -\frac{7}{2} ເປັນ x_{2}.
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x+\frac{7}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\left(x+\frac{7}{2}\right)
ລົບ \frac{4}{3} ອອກຈາກ x ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}+13x-28=6\times \frac{3x-4}{3}\times \frac{2x+7}{2}
ເພີ່ມ \frac{7}{2} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{3\times 2}
ຄູນ \frac{3x-4}{3} ກັບ \frac{2x+7}{2} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{6}
ຄູນ 3 ໃຫ້ກັບ 2.
6x^{2}+13x-28=\left(3x-4\right)\left(2x+7\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 6 ໃນ 6 ແລະ 6.