ຕົວປະກອບ
\left(3u-2\right)\left(2u+3\right)
ປະເມີນ
\left(3u-2\right)\left(2u+3\right)
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=5 ab=6\left(-6\right)=-36
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 6u^{2}+au+bu-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,36 -2,18 -3,12 -4,9 -6,6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-4 b=9
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 5.
\left(6u^{2}-4u\right)+\left(9u-6\right)
ຂຽນ 6u^{2}+5u-6 ຄືນໃໝ່ເປັນ \left(6u^{2}-4u\right)+\left(9u-6\right).
2u\left(3u-2\right)+3\left(3u-2\right)
ຕົວຫານ 2u ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(3u-2\right)\left(2u+3\right)
ແຍກຄຳທົ່ວໄປ 3u-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
6u^{2}+5u-6=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
u=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
u=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 5.
u=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
u=\frac{-5±\sqrt{25+144}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -6.
u=\frac{-5±\sqrt{169}}{2\times 6}
ເພີ່ມ 25 ໃສ່ 144.
u=\frac{-5±13}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
u=\frac{-5±13}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
u=\frac{8}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ u=\frac{-5±13}{12} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 13.
u=\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{8}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
u=-\frac{18}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ u=\frac{-5±13}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ -5.
u=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-18}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
6u^{2}+5u-6=6\left(u-\frac{2}{3}\right)\left(u-\left(-\frac{3}{2}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ \frac{2}{3} ເປັນ x_{1} ແລະ -\frac{3}{2} ເປັນ x_{2}.
6u^{2}+5u-6=6\left(u-\frac{2}{3}\right)\left(u+\frac{3}{2}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
6u^{2}+5u-6=6\times \frac{3u-2}{3}\left(u+\frac{3}{2}\right)
ລົບ \frac{2}{3} ອອກຈາກ u ໂດຍການຊອກາຕົວຫານ ແລະ ລົບຕົວເສດອອກໄປ. ຈາກນັ້ນຫຼຸດເສດສ່ວນໃຫ້ເຫຼືອໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6u^{2}+5u-6=6\times \frac{3u-2}{3}\times \frac{2u+3}{2}
ເພີ່ມ \frac{3}{2} ໃສ່ u ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6u^{2}+5u-6=6\times \frac{\left(3u-2\right)\left(2u+3\right)}{3\times 2}
ຄູນ \frac{3u-2}{3} ກັບ \frac{2u+3}{2} ໂດຍການຄູນຕົວເສດຄູນຕົວເສດ ແລະ ຕົວຫານຄູນຫານ. ຈາກນັ້ນຫຼຸດເສດສ່ວນເປັນພົດທີ່ໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6u^{2}+5u-6=6\times \frac{\left(3u-2\right)\left(2u+3\right)}{6}
ຄູນ 3 ໃຫ້ກັບ 2.
6u^{2}+5u-6=\left(3u-2\right)\left(2u+3\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 6 ໃນ 6 ແລະ 6.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}