Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2\left(3x^{2}-x-2\right)
ຕົວປະກອບຈາກ 2.
a+b=-1 ab=3\left(-2\right)=-6
ພິຈາລະນາ 3x^{2}-x-2. ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 3x^{2}+ax+bx-2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
ຂຽນ 3x^{2}-x-2 ຄືນໃໝ່ເປັນ \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 2 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(3x+2\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2\left(x-1\right)\left(3x+2\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
6x^{2}-2x-4=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -4.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
ເພີ່ມ 4 ໃສ່ 96.
x=\frac{-\left(-2\right)±10}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 100.
x=\frac{2±10}{2\times 6}
ຈຳນວນກົງກັນຂ້າມຂອງ -2 ແມ່ນ 2.
x=\frac{2±10}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{12}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±10}{12} ເມື່ອ ± ບວກ. ເພີ່ມ 2 ໃສ່ 10.
x=1
ຫານ 12 ດ້ວຍ 12.
x=-\frac{8}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±10}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 10 ອອກຈາກ 2.
x=-\frac{2}{3}
ຫຼຸດເສດສ່ວນ \frac{-8}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
6x^{2}-2x-4=6\left(x-1\right)\left(x-\left(-\frac{2}{3}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 1 ເປັນ x_{1} ແລະ -\frac{2}{3} ເປັນ x_{2}.
6x^{2}-2x-4=6\left(x-1\right)\left(x+\frac{2}{3}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
6x^{2}-2x-4=6\left(x-1\right)\times \frac{3x+2}{3}
ເພີ່ມ \frac{2}{3} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
6x^{2}-2x-4=2\left(x-1\right)\left(3x+2\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 3 ໃນ 6 ແລະ 3.