ແກ້ສຳລັບ x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1,666666667
x=\frac{1}{2}=0,5
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=7 ab=6\left(-5\right)=-30
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 6x^{2}+ax+bx-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,30 -2,15 -3,10 -5,6
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=10
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 7.
\left(6x^{2}-3x\right)+\left(10x-5\right)
ຂຽນ 6x^{2}+7x-5 ຄືນໃໝ່ເປັນ \left(6x^{2}-3x\right)+\left(10x-5\right).
3x\left(2x-1\right)+5\left(2x-1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(2x-1\right)\left(3x+5\right)
ແຍກຄຳທົ່ວໄປ 2x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=\frac{1}{2} x=-\frac{5}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 2x-1=0 ແລະ 3x+5=0.
6x^{2}+7x-5=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, 7 ສຳລັບ b ແລະ -5 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 7.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -5.
x=\frac{-7±\sqrt{169}}{2\times 6}
ເພີ່ມ 49 ໃສ່ 120.
x=\frac{-7±13}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 169.
x=\frac{-7±13}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{6}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±13}{12} ເມື່ອ ± ບວກ. ເພີ່ມ -7 ໃສ່ 13.
x=\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{6}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=-\frac{20}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-7±13}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 13 ອອກຈາກ -7.
x=-\frac{5}{3}
ຫຼຸດເສດສ່ວນ \frac{-20}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=\frac{1}{2} x=-\frac{5}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}+7x-5=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
6x^{2}+7x-5-\left(-5\right)=-\left(-5\right)
ເພີ່ມ 5 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
6x^{2}+7x=-\left(-5\right)
ການລົບ -5 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
6x^{2}+7x=5
ລົບ -5 ອອກຈາກ 0.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}+\frac{7}{6}x=\frac{5}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
ຫານ \frac{7}{6}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{7}{12}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{7}{12} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{7}{12} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
ເພີ່ມ \frac{5}{6} ໃສ່ \frac{49}{144} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
ຕົວປະກອບ x^{2}+\frac{7}{6}x+\frac{49}{144}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{1}{2} x=-\frac{5}{3}
ລົບ \frac{7}{12} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}