Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

3x^{2}+2x-5=0
ຫານທັງສອງຂ້າງດ້ວຍ 2.
a+b=2 ab=3\left(-5\right)=-15
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,15 -3,5
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -15.
-1+15=14 -3+5=2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-3 b=5
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 2.
\left(3x^{2}-3x\right)+\left(5x-5\right)
ຂຽນ 3x^{2}+2x-5 ຄືນໃໝ່ເປັນ \left(3x^{2}-3x\right)+\left(5x-5\right).
3x\left(x-1\right)+5\left(x-1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ 5 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(3x+5\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=1 x=-\frac{5}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-1=0 ແລະ 3x+5=0.
6x^{2}+4x-10=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-10\right)}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, 4 ສຳລັບ b ແລະ -10 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 6\left(-10\right)}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 4.
x=\frac{-4±\sqrt{16-24\left(-10\right)}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-4±\sqrt{16+240}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ -10.
x=\frac{-4±\sqrt{256}}{2\times 6}
ເພີ່ມ 16 ໃສ່ 240.
x=\frac{-4±16}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 256.
x=\frac{-4±16}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=\frac{12}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±16}{12} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 16.
x=1
ຫານ 12 ດ້ວຍ 12.
x=-\frac{20}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±16}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 16 ອອກຈາກ -4.
x=-\frac{5}{3}
ຫຼຸດເສດສ່ວນ \frac{-20}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=1 x=-\frac{5}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}+4x-10=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
6x^{2}+4x-10-\left(-10\right)=-\left(-10\right)
ເພີ່ມ 10 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
6x^{2}+4x=-\left(-10\right)
ການລົບ -10 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
6x^{2}+4x=10
ລົບ -10 ອອກຈາກ 0.
\frac{6x^{2}+4x}{6}=\frac{10}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}+\frac{4}{6}x=\frac{10}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}+\frac{2}{3}x=\frac{10}{6}
ຫຼຸດເສດສ່ວນ \frac{4}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}+\frac{2}{3}x=\frac{5}{3}
ຫຼຸດເສດສ່ວນ \frac{10}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(\frac{1}{3}\right)^{2}
ຫານ \frac{2}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
ເພີ່ມ \frac{5}{3} ໃສ່ \frac{1}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{1}{3}\right)^{2}=\frac{16}{9}
ຕົວປະກອບ x^{2}+\frac{2}{3}x+\frac{1}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{3}=\frac{4}{3} x+\frac{1}{3}=-\frac{4}{3}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=-\frac{5}{3}
ລົບ \frac{1}{3} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.