ແກ້ສຳລັບ x
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
x=-\frac{1}{3}\approx -0,333333333
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
a+b=11 ab=6\times 3=18
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 6x^{2}+ax+bx+3. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,18 2,9 3,6
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງເປັນຄ່າບວກທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 18.
1+18=19 2+9=11 3+6=9
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=2 b=9
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 11.
\left(6x^{2}+2x\right)+\left(9x+3\right)
ຂຽນ 6x^{2}+11x+3 ຄືນໃໝ່ເປັນ \left(6x^{2}+2x\right)+\left(9x+3\right).
2x\left(3x+1\right)+3\left(3x+1\right)
ຕົວຫານ 2x ໃນຕອນທຳອິດ ແລະ 3 ໃນກຸ່ມທີສອງ.
\left(3x+1\right)\left(2x+3\right)
ແຍກຄຳທົ່ວໄປ 3x+1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=-\frac{1}{3} x=-\frac{3}{2}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ 3x+1=0 ແລະ 2x+3=0.
6x^{2}+11x+3=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-11±\sqrt{11^{2}-4\times 6\times 3}}{2\times 6}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 6 ສຳລັບ a, 11 ສຳລັບ b ແລະ 3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 6\times 3}}{2\times 6}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 11.
x=\frac{-11±\sqrt{121-24\times 3}}{2\times 6}
ຄູນ -4 ໃຫ້ກັບ 6.
x=\frac{-11±\sqrt{121-72}}{2\times 6}
ຄູນ -24 ໃຫ້ກັບ 3.
x=\frac{-11±\sqrt{49}}{2\times 6}
ເພີ່ມ 121 ໃສ່ -72.
x=\frac{-11±7}{2\times 6}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{-11±7}{12}
ຄູນ 2 ໃຫ້ກັບ 6.
x=-\frac{4}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-11±7}{12} ເມື່ອ ± ບວກ. ເພີ່ມ -11 ໃສ່ 7.
x=-\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{-4}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 4.
x=-\frac{18}{12}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-11±7}{12} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ -11.
x=-\frac{3}{2}
ຫຼຸດເສດສ່ວນ \frac{-18}{12} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 6.
x=-\frac{1}{3} x=-\frac{3}{2}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
6x^{2}+11x+3=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
6x^{2}+11x+3-3=-3
ລົບ 3 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
6x^{2}+11x=-3
ການລົບ 3 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{6x^{2}+11x}{6}=-\frac{3}{6}
ຫານທັງສອງຂ້າງດ້ວຍ 6.
x^{2}+\frac{11}{6}x=-\frac{3}{6}
ການຫານດ້ວຍ 6 ຈະຍົກເລີກການຄູນດ້ວຍ 6.
x^{2}+\frac{11}{6}x=-\frac{1}{2}
ຫຼຸດເສດສ່ວນ \frac{-3}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=-\frac{1}{2}+\left(\frac{11}{12}\right)^{2}
ຫານ \frac{11}{6}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{11}{12}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{11}{12} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+\frac{11}{6}x+\frac{121}{144}=-\frac{1}{2}+\frac{121}{144}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{11}{12} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{49}{144}
ເພີ່ມ -\frac{1}{2} ໃສ່ \frac{121}{144} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x+\frac{11}{12}\right)^{2}=\frac{49}{144}
ຕົວປະກອບ x^{2}+\frac{11}{6}x+\frac{121}{144}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{11}{12}=\frac{7}{12} x+\frac{11}{12}=-\frac{7}{12}
ເຮັດໃຫ້ງ່າຍ.
x=-\frac{1}{3} x=-\frac{3}{2}
ລົບ \frac{11}{12} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}