Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-14 ab=5\left(-24\right)=-120
ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ 5x^{2}+ax+bx-24. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-20 b=6
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -14.
\left(5x^{2}-20x\right)+\left(6x-24\right)
ຂຽນ 5x^{2}-14x-24 ຄືນໃໝ່ເປັນ \left(5x^{2}-20x\right)+\left(6x-24\right).
5x\left(x-4\right)+6\left(x-4\right)
ຕົວຫານ 5x ໃນຕອນທຳອິດ ແລະ 6 ໃນກຸ່ມທີສອງ.
\left(x-4\right)\left(5x+6\right)
ແຍກຄຳທົ່ວໄປ x-4 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
5x^{2}-14x-24=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 5\left(-24\right)}}{2\times 5}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 5\left(-24\right)}}{2\times 5}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -14.
x=\frac{-\left(-14\right)±\sqrt{196-20\left(-24\right)}}{2\times 5}
ຄູນ -4 ໃຫ້ກັບ 5.
x=\frac{-\left(-14\right)±\sqrt{196+480}}{2\times 5}
ຄູນ -20 ໃຫ້ກັບ -24.
x=\frac{-\left(-14\right)±\sqrt{676}}{2\times 5}
ເພີ່ມ 196 ໃສ່ 480.
x=\frac{-\left(-14\right)±26}{2\times 5}
ເອົາຮາກຂັ້ນສອງຂອງ 676.
x=\frac{14±26}{2\times 5}
ຈຳນວນກົງກັນຂ້າມຂອງ -14 ແມ່ນ 14.
x=\frac{14±26}{10}
ຄູນ 2 ໃຫ້ກັບ 5.
x=\frac{40}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{14±26}{10} ເມື່ອ ± ບວກ. ເພີ່ມ 14 ໃສ່ 26.
x=4
ຫານ 40 ດ້ວຍ 10.
x=-\frac{12}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{14±26}{10} ເມື່ອ ± ເປັນລົບ. ລົບ 26 ອອກຈາກ 14.
x=-\frac{6}{5}
ຫຼຸດເສດສ່ວນ \frac{-12}{10} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
5x^{2}-14x-24=5\left(x-4\right)\left(x-\left(-\frac{6}{5}\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 4 ເປັນ x_{1} ແລະ -\frac{6}{5} ເປັນ x_{2}.
5x^{2}-14x-24=5\left(x-4\right)\left(x+\frac{6}{5}\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.
5x^{2}-14x-24=5\left(x-4\right)\times \frac{5x+6}{5}
ເພີ່ມ \frac{6}{5} ໃສ່ x ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
5x^{2}-14x-24=\left(x-4\right)\left(5x+6\right)
ຍົກເລີກຕົວຄູນທີ່ໃຫຍ່ທີ່ສຸດ 5 ໃນ 5 ແລະ 5.