Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

a+b=-12 ab=5\times 4=20
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 5x^{2}+ax+bx+4. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,-20 -2,-10 -4,-5
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ 20.
-1-20=-21 -2-10=-12 -4-5=-9
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-10 b=-2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -12.
\left(5x^{2}-10x\right)+\left(-2x+4\right)
ຂຽນ 5x^{2}-12x+4 ຄືນໃໝ່ເປັນ \left(5x^{2}-10x\right)+\left(-2x+4\right).
5x\left(x-2\right)-2\left(x-2\right)
ຕົວຫານ 5x ໃນຕອນທຳອິດ ແລະ -2 ໃນກຸ່ມທີສອງ.
\left(x-2\right)\left(5x-2\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=2 x=\frac{2}{5}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-2=0 ແລະ 5x-2=0.
5x^{2}-12x+4=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 4}}{2\times 5}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 5 ສຳລັບ a, -12 ສຳລັບ b ແລະ 4 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 4}}{2\times 5}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 4}}{2\times 5}
ຄູນ -4 ໃຫ້ກັບ 5.
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 5}
ຄູນ -20 ໃຫ້ກັບ 4.
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 5}
ເພີ່ມ 144 ໃສ່ -80.
x=\frac{-\left(-12\right)±8}{2\times 5}
ເອົາຮາກຂັ້ນສອງຂອງ 64.
x=\frac{12±8}{2\times 5}
ຈຳນວນກົງກັນຂ້າມຂອງ -12 ແມ່ນ 12.
x=\frac{12±8}{10}
ຄູນ 2 ໃຫ້ກັບ 5.
x=\frac{20}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{12±8}{10} ເມື່ອ ± ບວກ. ເພີ່ມ 12 ໃສ່ 8.
x=2
ຫານ 20 ດ້ວຍ 10.
x=\frac{4}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{12±8}{10} ເມື່ອ ± ເປັນລົບ. ລົບ 8 ອອກຈາກ 12.
x=\frac{2}{5}
ຫຼຸດເສດສ່ວນ \frac{4}{10} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=2 x=\frac{2}{5}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
5x^{2}-12x+4=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
5x^{2}-12x+4-4=-4
ລົບ 4 ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
5x^{2}-12x=-4
ການລົບ 4 ອອກຈາກຕົວມັນເອງຈະເຫຼືອ 0.
\frac{5x^{2}-12x}{5}=-\frac{4}{5}
ຫານທັງສອງຂ້າງດ້ວຍ 5.
x^{2}-\frac{12}{5}x=-\frac{4}{5}
ການຫານດ້ວຍ 5 ຈະຍົກເລີກການຄູນດ້ວຍ 5.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-\frac{4}{5}+\left(-\frac{6}{5}\right)^{2}
ຫານ -\frac{12}{5}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{6}{5}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{6}{5} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{4}{5}+\frac{36}{25}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{6}{5} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{16}{25}
ເພີ່ມ -\frac{4}{5} ໃສ່ \frac{36}{25} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{6}{5}\right)^{2}=\frac{16}{25}
ຕົວປະກອບ x^{2}-\frac{12}{5}x+\frac{36}{25}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{6}{5}=\frac{4}{5} x-\frac{6}{5}=-\frac{4}{5}
ເຮັດໃຫ້ງ່າຍ.
x=2 x=\frac{2}{5}
ເພີ່ມ \frac{6}{5} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.